ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ

Краткие решения Муниципальный этап, 2024

Всероссийская олимпиада школьников

по АСТРОНОМИИ

Муниципальный этап

10 класс

Краткие решения

ВАРИАНТ 1

Максимальное количество баллов – 48.

Задача 1.

Комета C/2023A3 Цзыцзиньшань-Атлас (Tsuchinshan–ATLAS) прошла перигелий 27 сентября 2024 года на расстоянии 0.39 а.е. от Солнца, при этом максимального видимого блеска она достигла лишь 9 октября (хотя её наземные наблюдения в эти дни были осложнены угловой близостью к Солнцу, но с борта космических телескопов она отлично наблюдалась). Из-за чего максимум блеска запоздал относительно момента перигелия кометы?.

Решение: Видимый блеск кометы зависит не только от её расстояния до Солнца, но и от её расстояния до Земли (6 баллов). На минимальное расстояние к Земле комета приблизилась как раз 9 октября, поэтому и яркость её тогда была максимальная (2 балла вывод).

Задача 2. Рисунок 1. Фото Луны вблизи «микролуния » и «суперлуниия» (негативное изображение).

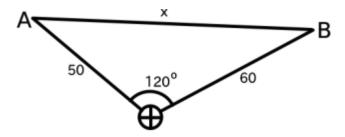
ВСЕРОССИЙСКАЯ ОЛИМПИАЛА ШКОЛЬНИКОВ

Краткие решения Муниципальный этап, 2024

Вам предложено два снимка Луны, сделанные вблизи «микролуния » 25.02.2024 и «суперлуниия» 18.08.2024 на обычный фотоаппарат с помощью объектива с фокусным расстоянием 500мм. Определите эксцентриситет орбиты Луны.

Примечание: Хотя официальных терминов «микролуние» и «суперлуние» нет, так в прессе называют полнолуния, когда Луна, за счёт эллиптичности орбиты, имеет минимальный и максимальный размеры, соответственно.

Решение: Прежде всего, ученик должен догадаться, что «микролуние» соответствует полнолунию вблизи апогея, а «суперлуние» - вблизи перигея луны (2 балла). Обозначим через Q — апогейное расстояние, q — перигейное; через D- видимый угловой диаметр в «суперлуние», d — оный в «микролуние».


Угловой размер Луны обратно пропорционален расстоянию до неё, D=l/q, d=l/Q (1 балл). Тогда соотношение для эксцентриситета e=(Q-q)/(Q+q) эквивалентно e=(D-d)/(D+d) (3 балла). Этот факт участник может либо знать, либо вывести на месте.

Измеряя (любым способом) диаметр Луны на изображении, получим e=0.05, что весьма близко к реальности. Верным можно считать ответ от 0.04 до 0.06 (2 балла за ответ в этом диапазоне). Если ответ не укладывается в диапазон, но логика решения верна, задачу следует оценить не выше, чем в 6 баллов).

Задача 3.

Наблюдатель с Земли следит за двумя звездами. Расстояние до звезды A - 50 световых лет, а расстояние до звезды B - 60 световых лет. Угол между звездой A, Землей и звездой B равен 120°. Найти линейное расстояние между звездами A и B.

Решение:

Линейное расстояние между звездами A и B можно найти по теореме косинусов, как третью сторону треугольника.

$$c = \sqrt{a^2 + b^2 - 2ab \cdot cos\alpha}$$

где a u b - uзвестные расстояния до звезд (стороны треугольника); α - yгол между ними (4 балла).

Тогда, подставив все данные в формулу, получим:

$$c = \sqrt{50^2 + 60^2 - 2.50.60 \cdot \cos 120^\circ} = \sqrt{9100} = 95.4$$
 световых лет (4 балла вычисления).

ВСЕРОССИЙСКАЯ ОЛИМПИАЛА ШКОЛЬНИКОВ

Краткие решения Муниципальный этап, 2024

Задача 4.

Наблюдатель, находясь на экваторе Земли, продолжает следить за двумя звездами из задачи 3. При этом звезда A имеет экваториальные координаты $\alpha_1 = 0.1^h 0.0^m$ и $\delta_1 = 60^o$, а звезда Б $\alpha_2 = 01^h 00^m$ и $\delta_2 = -60^o$. Звезда А взошла в 3^h местного среднего солнечного времени. Во сколько в те же сутки взойдёт звезда Б?

Решение: Поскольку на экваторе Земли все звёзды, находящиеся на одном круге склонений (т.е. имеющие равные прямые восхождения) восходят одновременно, то звезда Eтак же взойдёт в 3^h (8 баллов за любые верные рассуждения).

Для иллюстрации этого факта можно вспомнить, что при наблюдении на экваторе Земли небесный экватор является первым вертикалом и перпендикулярен мат. горизонту.

Залача 5.

Возьмем 3 Солнца, соединим их в один объект и получим белую звезду с температурой фотосферы 10 000К и средней плотностью 0.5 г/см³. Вычислите радиус белой звезды. Определите светимость полученной звезды в светимостях Солнца.

Решение: Плотность звезды

$$ho = M/((4/3)\pi R^3)$$
 , **(2 балла)**

откуда

$$R = [M/((4/3)\pi\rho)]^{1/3} = [3\cdot2\cdot10^{33}/((4/3)\cdot3.14\cdot0.5)]^{1/3} = 2.1\cdot10^{11}$$
 см, (2 балла)

что составляет $3R_O$.

Вычислим светимость звезды: $L = 4\pi R^2 \sigma T^4 = (R/R_O^2)(T/T_O^4) = 9.7.7 = 69 L_O$ (4 балла)

Задача 6.

Одна компонента двойной звезды имеет яркость 5^m, а вторая 7^m. Во сколько раз суммарный блеск двойной звезды ярче второй компоненты?

Решение: Примем освещенность Е, создаваемую слабой компонентой за единицу. Тогда яркая компонента будет давать освещенность в $(2.512)^2$ раза больше -6.31E. (4) балла) Суммарная освещенность 7.31 Е, т.е. суммарный блеск двойной в 7.31 раза больше блеска слабой компоненты. (4 балла)

Справочные данные:

 $1a.e.=1.496\cdot10^8$ км; 1пк=206265 a.e;

Масса Солнца $2 \cdot 10^{30}$ кг, Земли $6 \cdot 10^{24}$ кг, Марса $6 \cdot 10^{23}$ кг Луны $7 \cdot 10^{22}$ кг;

Радиус Солнца $-6.96 \cdot 10^5$ км.

Гравитационная постоянная $G=6.67 \cdot 10^{-11} \text{ H} \cdot \text{m}^2/\text{кг}^2$:

Скорость света $3 \cdot 10^5$ (км/с)

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ

Краткие решения Муниципальный этап, 2024

Всероссийская олимпиада школьников

по АСТРОНОМИИ

Муниципальный этап

10 класс

Краткие решения ВАРИАНТ 2

Максимальное количество баллов – 48.

Задача 1.

Рисунок 1. Фото Луны вблизи «микролуния » и «суперлуниия» (негативное изображение).

ВСЕРОССИЙСКАЯ ОЛИМПИАЛА ШКОЛЬНИКОВ

Краткие решения Муниципальный этап, 2024

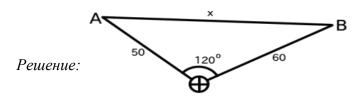
Вам предложено два снимка Луны, сделанные вблизи «микролуния » 25.02.2024 и «суперлуниия» 18.08.2024 на обычный фотоаппарат с помощью объектива с фокусным расстоянием 500мм. Определите эксцентриситет орбиты Луны.

Примечание: Хотя официальных терминов «микролуние» и «суперлуние» нет, так в прессе называют полнолуния, когда Луна, за счёт эллиптичности орбиты, имеет минимальный и максимальный размеры, соответственно.

Решение: Прежде всего, ученик должен догадаться, что «микролуние» соответствует полнолунию вблизи апогея, а «суперлуние» - вблизи перигея луны (2 балла). Обозначим через Q — апогейное расстояние, q — перигейное; через D- видимый угловой диаметр в «суперлуние», d — оный в «микролуние».

Угловой размер Луны обратно пропорционален расстоянию до неё, D=l/q, d=l/Q (1 балл). Тогда соотношение для эксцентриситета e=(Q-q)/(Q+q) эквивалентно e=(D-d)/(D+d) (3 балла). Этот факт участник может либо знать, либо вывести на месте.

Измеряя (любым способом) диаметр Луны на изображении, получим e=0.05, что весьма близко к реальности. Верным можно считать ответ от 0.04 до 0.06 (2 балла за ответ в этом диапазоне). Если ответ не укладывается в диапазон, но логика решения верна, задачу следует оценить не выше, чем в 6 баллов).


Задача 2.

Комета C/2023A3 Цзыцзиньшань-Атлас (Tsuchinshan–ATLAS) прошла перигелий 27 сентября 2024 года на расстоянии 0.39 а.е. от Солнца, при этом максимального видимого блеска она достигла лишь 9 октября (хотя её наземные наблюдения в эти дни были осложнены угловой близостью к Солнцу, но с борта космических телескопов она отлично наблюдалась). Из-за чего максимум блеска запоздал относительно момента перигелия кометы?.

Решение: Видимый блеск кометы зависит не только от её расстояния до Солнца, но и от её расстояния до Земли (6 баллов). На минимальное расстояние к Земле комета приблизилась как раз 9 октября, поэтому и яркость её тогда была максимальная (2 балла вывод).

Задача 3.

Наблюдатель с Земли следит за двумя звездами. Расстояние до звезды A - 50 световых лет, а расстояние до звезды B - 60 световых лет. Угол между звездой A, Землей и звездой B равен 120°. Найти линейное расстояние между звездами A и B.

Линейное расстояние между звездами A и B можно найти по теореме косинусов, как третью сторону треугольника.

$$c = \sqrt{a^2 + b^2 - 2ab \cdot cos\alpha}$$

где a и b - известные расстояния до звезд (стороны треугольника); α - угол между ними (4 балла).

Тогда, подставив все данные в формулу, получим:

 $c = \sqrt{50^2 + 60^2 - 2.50.60 \cdot \cos 120^\circ} = \sqrt{9100} = 95.4$ световых лет (4 балла вычисления).

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ

Краткие решения Муниципальный этап, 2024

Задача 4.

Наблюдатель, находясь на экваторе Земли, продолжает следить за двумя звездами из задачи 3. При этом звезда А имеет экваториальные координаты α_1 =01 h 00 m и δ_1 =60 o , а звезда Б α_2 =01 h 00 m и δ_2 =--60 o . Звезда А взошла в 3 h местного среднего солнечного времени. Во сколько в те же сутки взойдёт звезда Б?

Решение: Поскольку на экваторе Земли все звёзды, находящиеся на одном круге склонений (т.е. имеющие равные прямые восхождения) восходят одновременно, то звезда E так же взойдёт в E баллов за любые верные рассуждения).

Для иллюстрации этого факта можно вспомнить, что при наблюдении на экваторе Земли небесный экватор является первым вертикалом и перпендикулярен мат. горизонту.

Задача 5.

Возьмем 3 Солнца, соединим их в один объект и получим белую звезду с температурой фотосферы 10 000К и средней плотностью 0.5 г/см³. Вычислите радиус белой звезды. Определите светимость полученной звезды в светимостях Солнца.

Решение: Плотность звезды

$$ho = M/((4/3)\pi R^3)$$
, (2 балла)

откуда

$$R = [M/((4/3)\pi\rho)]^{\frac{1}{3}} = [3\cdot2\cdot10^{33}/((4/3)\cdot3.14\cdot0.5)]^{\frac{1}{3}} = 2.1\cdot10^{11}$$
 см, (2 балла)

что составляет $3R_{O}$.

Вычислим светимость звезды: $L = 4\pi R^2 \sigma T^4 = (R/R_O^2)(T/T_O^4) = 9.7.7 = 69 L_O$. (4 балла)

Задача 6.

Одна компонента двойной звезды имеет яркость 5^{m} , а вторая 7^{m} . Во сколько раз суммарный блеск двойной звезды ярче второй компоненты?

Решение: Примем освещенность E, создаваемую слабой компонентой за единицу. Тогда яркая компонента будет давать освещенность в $(2.512)^2$ раза больше — 6.31E. (4 балла) Суммарная освещенность 7.31 E, т.е. суммарный блеск двойной в 7.31 раза больше блеска слабой компоненты. (4 балла)

Справочные данные:

 $1a.e.=1.496\cdot10^8$ км; 1пк=206265 a.e;

Масса Солнца $2 \cdot 10^{30}$ кг, Земли $6 \cdot 10^{24}$ кг, Марса $6 \cdot 10^{23}$ кг Луны $7 \cdot 10^{22}$ кг;

Радиус Солнца $-6.96 \cdot 10^5$ км.

Гравитационная постоянная $G=6.67 \cdot 10^{-11} \text{ H*m}^2/\text{кг}^2$;

Скорость света $3 \cdot 10^5$ (км/с)